Solving Heat and Wave-Like Equations Using He's Polynomials
نویسندگان
چکیده
منابع مشابه
Solving Heat and Wave-Like Equations Using He's Polynomials
We use He’s polynomials which are calculated form homotopy perturbation method HPM for solving heat and wave-like equations. The proposed iterative scheme finds the solution without any discretization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that suggested technique solves nonlinear problems without u...
متن کاملAbout homotopy perturbation method for solving heat–like and wave–like equations with variable coefficients
We analyze a recent application of homotopy perturbation method to some heat–like and wave–like models and show that its main results are merely the Taylor expansions of exponential and hyperbolic functions. Besides, the authors require more boundary conditions than those already necessary for the solution of the problem by means of power series.
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملHeat Polynomials, Umbral Correspondence and Burgers Equations.
We show that the umbral correspondence between differential equations can be achieved by means of a suitable transformation preserving the algebraic structure of the problems. We present the general properties of these transformations, derive explicit examples and discuss them in the case of the Appèl and Sheffer polynomial families. We apply these transformations to non-linear equations, and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2009
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2009/427516